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A B S T R A C T   

Background and Objective: Alzheimer’s disease (AD) is a dreaded degenerative disease that results in a profound 
decline in human cognition and memory. Due to its intricate pathogenesis and the lack of effective therapeutic 
interventions, early diagnosis plays a paramount role in AD. Recent research based on neuroimaging has shown 
that the application of deep learning methods by multimodal neural images can effectively detect AD. However, 
these methods only concatenate and fuse the high-level features extracted from different modalities, ignoring the 
fusion and interaction of low-level features across modalities. It consequently leads to unsatisfactory classifi-
cation performance. 
Method: In this paper, we propose a novel multi-scale attention and cross-enhanced fusion network, MACFNet, 
which enables the interaction of multi-stage low-level features between inputs to learn shared feature repre-
sentations. We first construct a novel Cross-Enhanced Fusion Module (CEFM), which fuses low-level features 
from different modalities through a multi-stage cross-structure. In addition, an Efficient Spatial Channel 
Attention (ECSA) module is proposed, which is able to focus on important AD-related features in images more 
efficiently and achieve feature enhancement from different modalities through two-stage residual concatenation. 
Finally, we also propose a multiscale attention guiding block (MSAG) based on dilated convolution, which can 
obtain rich receptive fields without increasing model parameters and computation, and effectively improve the 
efficiency of multiscale feature extraction. 
Results: Experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset demonstrate that our 
MACFNet has better classification performance than existing multimodal methods, with classification accuracies 
of 99.59 %, 98.85 %, 99.61 %, and 98.23 % for AD vs. CN, AD vs. MCI, CN vs. MCI and AD vs. CN vs. MCI, 
respectively, and specificity of 98.92 %, 97.07 %, 99.58 % and 99.04 %, and sensitivity of 99.91 %, 99.89 %, 
99.63 % and 97.75 %, respectively. 
Conclusions: The proposed MACFNet is a high-accuracy multimodal AD diagnostic framework. Through the cross 
mechanism and efficient attention, MACFNet can make full use of the low-level features of different modal 
medical images and effectively pay attention to the local and global information of the images. This work 
provides a valuable reference for multi-mode AD diagnosis.   

1. Introduction 

Alzheimer’s disease (AD) is an irreversible degenerative brain 

disease, which is a serious disease to society [1]. As the global popula-
tion continues to age, the number of dementia patients is increasing 
dramatically. Research suggests that about 50 million people were 
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affected by dementia in 2018, and this number is estimated to reach 152 
million by 2050. The cost of the disease is currently estimated at $1 
trillion per year and is expected to double by 2030 [2]. Due to the 
complexity of the pathogenesis, no effective drug or method has been 
developed to cure AD. Hence, accurate early detection and treatment of 
AD is of great significance. 

According to the clinical symptoms of the patients, the subjects were 
divided into Controlled Normal (CN), Mild Cognitive Impairment (MCI), 
and AD [3,4]. Currently, the clinical examination methods for Alz-
heimer’s disease primarily include electroencephalogram (EEG) exam-
ination, neuropsychological assessments, and neuroimaging 
examination [5]. Commonly used neuropsychological examinations 
include the Mini-Mental State Examination (MMSE) and the Clinical 
Dementia Rating (CDR) [6]. Neuropsychological examination is only an 
adjunctive diagnostic method in clinical practice. With advancements in 
technology, neuroimaging diagnosis has become the most crucial and 
intuitive method for diagnosing Alzheimer’s disease. In neuroimaging 
diagnostics, the most commonly used are magnetic resonance images 
(MRI) and positron emission computed tomography (PET) images [7]. 
MRI is capable of demonstrating brain tissue with high-resolution im-
aging while clearly distinguishing between grey and white matter areas 
of the brain.PET can track and show the distribution of abnormalities in 
the brain using imaging agents. 

In recent years, many researchers have used deep learning methods 
for AD diagnosis [8,9]. Convolutional neural networks (CNNs) can 
extract high-level features by stacking layers to capture subtle lesion 
sites [10]. However, unimodal AD images only contain partial abnormal 
information about the brain, making classification often difficult to 
achieve the desired results. For instance, MR images provide details of 
soft tissues and high-resolution anatomical information that reflect 
changes in brain structure, while PET images only provide functional 
information regarding blood flow and metabolic changes [11]. Consid-
ering the ability of multimodal images to provide rich and comple-
mentary information, the study of multimodal AD classification models 
has become an important approach in order to enhance classification 
accuracy [12,13]. 

There are three approaches to multimodal AD classification. (1) 
feature fusion method. This method feeds the original multimodal 
neuroimaging or clinical data into a multi-input network for feature 
extraction and then fuses the learned high-level features to improve AD 
classification accuracy [14,15]. The method utilizes the complementary 
information of different modes and effectively mitigates the problem of 
noise interference encountered in unimodal data. However, most studies 
focus only on fusing high-level features, thus ignoring the heterogeneity 
of different modality images and the interaction of low-level features. 
Additionally, simple feature fusion of low-dimensional clinical 
biomarker information with high-dimensional neuroimaging often leads 
to dimension mismatch [16]. (2) Image fusion method. This method 
integrates the complementary and related features of multiple images 
into a single fusion image, which can effectively improve the diagnosis 
and treatment effect [17]. However, due to factors such as image quality 
or availability, multimodal images may be incomplete, and this method 
is severely limited in practice. (3) Data generation method. This method 
primarily utilizes the Generative Adversarial Network (GAN) algorithm 
to directly generate missing data from available modal data [18]. 
However, due to the complexity of medical images, significant differ-
ences exist in semantics, resolution, and organization of edge informa-
tion between synthetic and real images. 

In addition, recent studies have found that despite multimodal ap-
proaches have achieved good results in AD diagnosis, there are still some 
challenges. For example, images from different modalities have different 
resolutions and feature expressions, and direct fusion of features from 
these images may lead to information loss or redundancy. Furthermore, 
due to the complexity of brain structure, the abnormalities associated 
with AD are distributed across multiple regions of the brain at different 
scales. Although CNNs enhance the ability to capture local information 

through convolutional operations, the resulting limitation is that CNNs 
are more concerned with local regional features of the brain, thus 
limiting their ability to model distant features between brain regions and 
global features. To solve this problem, multiscale methods have been 
proposed to capture detailed information on images at different scales 
[19]. The multi-scale method enhances image classification perfor-
mance by constructing image pyramids with different scales and 
applying convolutional kernels of multiple scales to extract various 
features of different scale regions of interest (ROIs), including local and 
global information [20]. 

In summary, although CNNs have been extensively studied in 
multimodal AD diagnosis, some urgent problems still need to be solved. 
(1) The low-level features of different modalities contain more local and 
detailed information related to AD. Nevertheless, the existing multi-
modal feature fusion methods simply splice the high-level features, thus 
ignoring the cross-modal interactions of the low-level features, which 
limits the shared representation of the model [21]. Although some 
studies have employed self-attention to address the cross-modal inter-
action problem, there are still problems such as low fusion efficiency and 
large size of parameters. (2) Abnormalities associated with AD are 
distributed across multiple regions of the brain at different scales [22, 
23]. However, most CNN-based multimodal methods focus only on a 
single scale and cannot effectively extract global features across brain 
regions. In this context, the powerful extraction capability of multiscale 
methods for local and global features of images under different receptive 
fields becomes more and more prominent [24]. For example, Lu et al. 
[25] extracted multiscale features by manually segmenting multimodal 
images into patches of different sizes, and experimentally demonstrated 
the effectiveness of multiscale feature extraction in AD diagnosis; 
however, manually segmenting the patches resulted in the loss of details 
of AD-related lesions. Unlike Lu, Gao et al. [26] extracted multiscale 
information for AD based on multiscale pyramid convolution. However, 
the computational complexity of pyramid convolution is high, and fea-
tures extracted at large scales may overlap with those extracted at small 
scales, leading to information redundancy. 

In this paper, we design a multiscale attention and cross- 
enhancement fusion network, MACFNet, targeting the problem that 
existing feature fusion methods ignore the low-level feature in-
teractions, the interaction and fusion of multilevel low-level features 
between different modalities are realised through a two-branch cross-
over structure, and then the proposed efficient spatial channel attention 
mechanism is used in the residual structure, forcing the network to pay 
attention to the important features related to AD, to achieve structural 
feature enhancement in MRI and functional feature enhancement in 
PET. In addition, a multi-scale attention guidance module based on in-
flationary convolution is proposed to address the redundant information 
and noise problems brought by existing multi-scale methods. In the 
multiscale feature extraction stage, compared with multiscale pyramid 
convolution, the dilated convolution can obtain rich receptive fields 
without increasing model parameters and computation, which helps to 
improve the efficiency of multiscale feature extraction. In the multiscale 
feature fusion stage, we propose the hard attention mechanism. Unlike 
existing multiscale methods, this hard attention is used to suppress 
redundant information from different scales before fusion to reduce the 
negative impact caused by redundant information. Finally, the effec-
tiveness of the proposed MACFNet is verified in AD, CN and MCI clas-
sification tasks. Overall, our contributions are summarised as follows:  

(1) A dual-branch fusion CNN based on a crossover mechanism, 
MACFNet, to localize the discriminative regions related to AD 
without prior knowledge, effectively improving AD classification 
accuracy.  

(2) A cross-enhanced fusion module is proposed, which enables the 
fusion and interaction of MRI and PET low-level features through 
the cross-over mechanism. In addition, the ECSA attention 
mechanism is designed to effectively focus on important 
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information related to AD for MRI structural feature enhance-
ment and PET functional feature enhancement.  

(3) A concise multi-scale attention guidance block is proposed by 
setting different dilation rates to obtain different receptive fields. 
It can also get discriminative information related to AD via hard 
attention with different scales. 

The rest of the paper is arranged as follows: Section 2 introduces the 
related work, Section 3 introduces the proposed methodology, Section 4 
introduces the experimental results, Section 5 the discussion, and Sec-
tion 6 is the conclusion. 

2. Related works 

In recent years, CNNs have performed well in various visual tasks, 
such as classification and semantic segmentation. It can automatically 
extract features from multimodal images like MRI and PET, reducing 
manual feature extraction’s complexity. This section introduces 
methods related to AD diagnosis from two aspects. Firstly, deep 
learning-based multimodal AD diagnosis methods are introduced, 
including (i) feature fusion-based methods, (ii) image fusion-based 
methods, (iii) data generation-based methods, (iv) cross-modal inter-
action-based methods. In addition, since AD affects multiple regions of 
the brain, multiscale methods are considered to address the problem of 
traditional CNNs focusing only on localized information. Therefore, this 
section also introduces several multi-scale methods for AD diagnosis. 

2.1. Multimodal-based AD diagnosis 

2.1.1. Feature fusion methods 
The method based on feature fusion is to put neuroimaging or clin-

ical data of different modalities into the multi-branch neural network 
separately, then gradually learn the potential feature representation of 
different modal data, and finally achieve AD classification [27]. Zhu 
et al. [28] proposed a deep multimodal discriminative network DMDIN. 
Firstly, features of different modalities were reconstructed in the com-
mon space using MLP, then shared expression coefficients were used to 
embed inter and intra-class structural information of different modal-
ities, and finally, generalised typical correlation analysis (GCCA) was 
used to generate the discriminative common space. With this approach, 
it is possible to aggregate the same type of features and separate 
different types of features. Their method resulted in a classification ac-
curacy of 96.75 % for AD and CN. Unfortunately, their approach solely 
focused on binary classification and neglected the multi-class classifi-
cation scenarios. Xing et al. [29] used the vision transformer (VIT) 
instead of CNNs to improve AD classification accuracy. Considering the 
high computational cost of 3D images, they projected two 3D scans of 
PET (PET-AV45 and PETFDG) into a 2D fused image, then put the fused 
images into VIT for feature extraction separately, and finally fused 
features from different modalities for AD classification. However, their 
method only fuses high-level features and ignores the interaction of 
low-level features of different modalities. Abde et al. [30] integrated the 
original neuroimaging features and the ROI in the brain into a CNN and 
concatenated the high-level features learned from both modalities for 
AD diagnosis. However, this method neglected the interaction of 
low-level features. In addition, the process of synthesizing ROI images is 
unstable, which is not conducive to model training. 

In practical diagnosis, features of different modalities possess vary-
ing dimensional information [16], and simply splicing and fusing these 
features will lead to dimensional mismatch. Therefore, Shi et al. [31] 
proposed a novel adaptive similarity-based multimodal feature selection 
(ASMFS) method. This method solves the challenge of dealing with 
high-dimensional features and effectively captures the intrinsic simi-
larity of various modalities. Unfortunately, their method neglects the 
multi-class classification case. Chen et al. [32] proposed an 
attention-based approach for multimodal AD diagnosis. They combined 

neuroimaging, clinical data, and genetic information to extract features 
from different dimensions of data. First, they use convolutional blocks to 
extract high-dimensional features from neuroimages while using 
embedding techniques to transform preprocessed clinical and genetic 
data into feature vectors as well. Then, attention blocks are used to 
process feature vectors from different modalities. Their approach 
resulted in a classification accuracy of 97.90 % for AD and CN. However, 
this method does not take into account the dimensional differences in 
the data from different modalities, nor does it consider the interaction of 
low-level features. Tu et al. [16] proposed a cutting-edge model for 
Alzheimer’s disease (AD) diagnosis, focusing on feature transformation 
using multimodal data. Initially, they enhanced the subjects’ 
low-dimensional clinical and biological features by employing 
base-geometry algebra, thereby converting them into high-dimensional 
features. Subsequently, they introduced a feature filtering algorithm to 
exclude irrelevant features that lack significant information for AD 
diagnosis. Ultimately, they integrated the transformed features with 
MRI data. Compared to unimodal data, the multimodal feature fusion 
strategy is indeed effective in improving the classification accuracy of 
AD [33]. However, deep learning methods based on feature fusion tend 
to have high computational complexity due to the heterogeneity of 
different modal data. Furthermore, the majority of multimodal methods 
applied in neuroimaging focus only on fusing high-level features and 
neglecting the interaction of low-level features. As a result, they fail to 
effectively integrate functional and structural information from multi-
modal neuroimaging. 

2.1.2. Image fusion methods 
Unlike feature fusion methods, multimodal image fusion methods 

integrate complementary and relevant information from different modal 
images into the fused image [34]. It reduces computational complexity 
and transcends the limitations of low-level feature interactions. Ismail 
et al. [35] proposed an integrated learning architecture (UltiAz-Net) 
based on multimodal image fusion. They simultaneously used several 
different CNNs such as (AlexNet, Inception -V3, and ResNet) to extract 
high-level features from the fused images. In addition, they used a 
multi-objective optimisation algorithm to optimise each layer in the 
network for automatic AD classification. However, this approach of 
integrating multiple CNNs can cause the model to have high computa-
tional complexity. Kang et al. [36] conducted preprocessing on MRI and 
diffusion tensor imaging (DTI) by FreeSurfer software. Then, the 
two-dimensional slices were fused into a single RGB image according to 
corresponding indexes. Finally, the RGB image was fed into a 
pre-trained VGG16 network for classification. However, they only 
focused on the classification of MCI and CN without considering other 
classification scenarios. To reduce the noise and irrelevant information 
in the fused images, Song et al. [37] integrated the gray matter (GM) 
tissue information from MRI and PET images into a novel "GM-PET" 
image, selectively retaining the GM regions highly associated with the 
AD diagnosis, which effectively reduced the interruption of noisy in-
formation. Compared with other image fusion methods, their approach 
significantly reduced the number of parameters, achieving a classifica-
tion accuracy of 94.11 % for AD and CN. However, the preprocessing 
step of this method is highly time-consuming. Although multimodal 
fusion methods can achieve better classification performance, in clinical 
practice, it is difficult to obtain both MRI and PET images of the same 
subject due to their availability and high economic costs. Therefore, AD 
diagnosis based on image fusion methods is often difficult to achieve. 

2.1.3. Data generation methods 
To address the problem of missing unimodal data, some studies have 

generated missing data from existing images by the GAN. Lin et al. [38] 
proposed a reversible generative adversarial network (RevGAN) to 
reconstruct PET images from MR images and then put the multimodal 
images into a CNN classification model for AD diagnosis. Their method 
achieved an accuracy of 89.05 % in the classification of AD and CN. 

C. Tang et al.                                                                                                                                                                                                                                    



Computer Methods and Programs in Biomedicine 254 (2024) 108259

4

Unlike the direct generation of missing images, Ye et al. [39] proposed a 
feature generation-based GAN, where features are first extracted from 
the complete MRI. Then the GAN is used to generate missing PET fea-
tures. Additionally, linear attention is employed to effectively preserve 
salient features related to the disease. However, their approach focuses 
solely on binary classification and disregards the issue of 
multi-classification. 

In general, although GAN methods can generate missing images for 
multimodal AD diagnosis, there are still some shortcomings. Firstly, the 
issue of uncertainty in generating results has not been settled. Due to the 
GAN’s stochastic nature, the GAN’s missing data may vary each time, 
making it impossible to have complete control over the accuracy and 
consistency of the generated images. Secondly, the training process is 
unstable. To achieve high-quality generated images, it requires pro-
longed training and fine-tuning. Otherwise, it may lead to an unstable 
training process and low-quality generated images. Finally, there is an 
issue concerning the visual quality of generated images. Although the 
discriminator in GAN can regulate the distribution of images and 
improve visual quality, the synthesized images fail to preserve crucial 
disease-related features due to the intricate spatial structure of medical 
images. 

2.1.4. Cross-modal low-level feature interaction 
Although many multimodal AD diagnosis methods are based on 

feature fusion, they all ignore the key issue of cross-modal interaction in 
multimodal learning [40,41]. Most methods focus only on high-level 
features, ignoring the interaction of low-level features, which limits 
the shared representation ability of the model [42]. 

Some studies have presented related suggestions and solutions for 
implementation. For example, Golovanevsky et al. [43] employ 
self-attention and cross-modal attention to integrate MR images, clinical 
data, and genetic information. For each modality, self-attention is first 
used to learn the most important features in the unimodal data, and then 
cross-modal attention is used to acquire features from other modalities 
to enhance its features. Finally, the output of the feature from the 
cross-modal attention layer is fused for AD diagnosis. However, the 
differences in the dimensions of image features and clinical features may 
cause dimension mismatch to rely solely on attention in the process of 
cross-modal interaction. Pan et al. [44] combined Transformer and GAN 
to propose a new cross-modal network to fuse MRI and DTI images. They 
proposed a two-way attention mechanism, which can extract fMRI 
functional features and DTI structural features by CNNs and Graph 

Convolutional Networks (GCNs), respectively. The features of different 
modalities are fused layer by layer and then fed into the Transformer 
model to realize AD diagnosis. However, their approach implements the 
self-attention mechanism by computing a set of query matrix Q, key 
matrix K, and value matrix V by linear projection, which has a high time 
complexity. In addition, their method transforms functional information 
and structural information into each other to achieve the fusion of 
complementary information, which may lead to the loss of important 
features of individual modalities. Unlike them, Leng et al. [45] proposed 
a simple cross-enhanced fusion network to diagnose AD, in which they 
divided the original image into non-overlapping chunks for input into 
the network. Specifically, they first proposed a multiscale remote 
receiver module to extract multiscale information using deep convolu-
tion with different kernel sizes on four branches. In addition, they pro-
pose two spatial enhancement modules and a channel enhancement 
module with a crossover structure, which are implemented to realize the 
interaction of different modal information through two different mo-
dality convolution blocks and a residual connection. This approach 
further enhances the cross-modal fusion capability of the network 
through the crossover mechanism, but they only consider the fusion of 
high-level features and ignore the importance of low-level features. In 
addition, they only considered binary classification and did not consider 
the multiclassification case. 

2.2. Multi-scale-based AD diagnosis 

The lesions associated with AD occur in multiple regions at different 
scales of the brain, and many studies use the multiscale approach in 
order to AD diagnosis [46]. Lu et al. [25] segmented MRI and PET scans 
into patches of different sizes and then extracted multiscale features 
using six deep neural networks. These features were then fed into 
another DNN for fusion for AD diagnosis. It is worth noting that their 
approach involved manual segmentation of patches at different scales, 
which could potentially result in the loss of intricate details relevant to 
AD. Song et al. [37] argued that by combining multi-scale methods, 
shallow detailed information as well as deep semantic information can 
be extracted from images. They proposed a 3D multiscale CNN archi-
tecture based on U-Net that utilizes skip connections to combine features 
of different scales in the fused image, while applying dropout layers to 
prevent overfitting, and finally fuses the different scale features to a 
classifier for AD classification. However, their approach uses different 
stages of downsampling to obtain multi-scale information, which may 
lose useful features. For multimodal AD diagnosis, Gao et al. [26] 
introduced a multiscale model in the GAN. They designed two pyramidal 
convolution blocks in the generator to process input images from 
different scales. Pyramidal convolution can capture different levels of 
image detail through different receptive fields. Their method achieves 
92.7 % accuracy in the classification of AD and CN. Unfortunately, py-
ramidal convolution has high computational complexity, and features 
extracted on large scales may overlap with those on small scales, which 
may generate redundancy of information. To solve this problem, Liu 
et al. [47] proposed a dilated convolution-based model (MSCNet) to 
extract multi-scale features by different dilation rates and receptive 
fields. To learn the dependence among each channel, they present a 
double-weight network based on an improved channel attention 
mechanism. However, this method contains sum and cascade opera-
tions, which will generate redundant noise. Furthermore, they focused 
only on grey matter (GM) regions and white matter (WM) regions of the 
brain in unimodal MRI and did not consider the multimodal situation. 

3. Methods 

3.1. Data acquisition and preprocessing 

3.1.1. Data acquisition 
The dataset used in this article is from the ADNI database (https:// 

Table 1 
Detailed information about the subjects.  

Category Number Age Gender(F/M) CDR MMSE 

AD 214 74.1 ± 7.8 96/118 0.9 ± 0.6 22.2 ± 4.3 
CN 326 76.3 ± 6.2 162/164 0 ± 0 28.6 ± 1.3 
MCI 226 76.2 ± 7.3 81/145 0.6 ± 0.2 25.8 ± 4.4  

Table 2 
Imaging parameters of the scanner.  

Imaging 
Parameter 

Manufacturer 

SIEMENS Philips Medical 
Systems 

GE Medical 
Systems 

repetition time 
[TR]/ms 

3000 6.8005 7.332 

echo time [TE]/ms 3.5 3.116 3.036 
inversion time [TI]/ 

ms 
1000 0 400 

flip angle/◦ 8 9 11 
thickness/mm 1.2 1.2 1.2 
matrix size/voxel 192 × 192 ×

160 
256 × 256 × 170 256 × 256 × 196 

field strength/T 3.0 3.0 3.0  

C. Tang et al.                                                                                                                                                                                                                                    

https://adni.loni.usc.edu/


Computer Methods and Programs in Biomedicine 254 (2024) 108259

5

adni.loni.usc.edu/). ADNI is a multicenter longitudinal study designed 
to assist physicians in researching and developing the most effective 
clinical diagnostic and therapeutic protocols for AD. The database pre-
sents four studies (ADNI-1, ADNI-2, ADNI-GO, and ADNI-3). Following 
the methodology described in [43], we selected 766 subjects from the 
ADNI-GO and ADNI-2 phases who obtained MRI and PET images at 
baseline (10 months). These included 214 CE subjects, 326 CN subjects, 
and 226 MCI subjects. Each subject had one T1-weighted MRI image in 
NIFTI file format and one PET (FDG-PET) image. Table 1 shows the 
detailed information of the selected subjects. 

Due to the ADNI volunteers being sourced from various countries 
and regions, the imaging equipment used for scanning differs across all 
subjects. For the convenience of the study, we selected the three most 
widely used imaging devices in current practice. MR images of all sub-
jects were obtained using three magnetic resonance scanners. The im-
aging parameters of each scanner are shown in Table 2. 

3.1.2. Data preprocessing 
Due to variations in imaging techniques, significant differences and 

noise interference exist between different brain images, making it 
difficult to extract effective features from them. The preprocessing 
operation removes redundant information from the image irrelevant to 

AD diagnosis and lays the foundation for subsequent analysis. The pre-
processing of our method is divided into three steps:  

(1) Image correction. The raw MR images were first processed for 
image correction to remove phenomena such as motion artifacts 
and noise from the images. Image correction includes head mo-
tion correction and bias field correction. In this paper, head 
motion correction is performed on MR images based on anterior 
perineum (AC) and posterior perineum (PC) localization criteria. 
Then, the bias field correction is performed by the N4BiasField-
Correction.sh module integrated into the ANTs tool.2 The image 
size was set to 3, 3, and 3, and the scaling factors were set to 8, 4, 
and 2. In addition, the robustfov tool in the FMRIB Software Li-
brary3 (FSL) was used to remove the neck region from the MR 
images.  

(2) Image registration. We aligned MRI and PET images to address 
the spatial geometric inconsistencies of the different modality 
images. First, the PET images were aligned to the structural space 

Fig. 1. Comparison of the corrected and preprocessed images. (a-c) show the preprocessing process of MRI axial image, and (d-f) show the preprocessing process of 
PET axial image. 

Fig. 2. The overall network architecture of MACFNet.  

2 Available at https://github.com/ANTsX/ANTs  
3 Available at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki 
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of the corresponding MR images of each subject using the FMRIB 
linear image alignment tool (FLIRT). The similarity measurement 
function was set to Normal Mutual Information (NMI), the image 
interpolation was set to B-spline interpolation, and the degree of 
freedom (DOF) was set to 6. Then, the MR images were aligned to 
the MNI standard space using the FMRIB Nonlinear Image 
Alignment Tool (FNIRT). Finally, PET images in the MRI struc-
ture space were registered to the MNI structure space according 
to the MRI transformation matrix.  

(3) Tissue segmentation. Atrophy and lesions in grey matter, white 
matter, and regions are a focus of Alzheimer’s research as they 
are closely associated with disease progression and symptoms. 
However, aligned MRI and PET images contain regions of the 
skull, cerebellum, etc., that are not directly relevant to the 
diagnosis of AD, and these regions may increase the computa-
tional burden and interfere with the diagnosis. Therefore, tissue 
segmentation of images is required. In this paper, we use the 
CAT12 toolbox in SPM4 software to remove the cranium and 
cerebellum from MRI and PET images to reduce the computa-
tional burden and exclude the interference of irrelevant regions. 
Finally, to improve the image quality further, the images were 
smoothed using a Gaussian kernel function to suppress the noise 
in the functional images and to make the grey and white matter 
changes in the images clearer. 

As is shown in Fig. 1, the MRI and PET images were processed in the 
axial view by the med2image tool.5 Fig. 1(a)-Fig. 1(c) represents the 
axial image of MRI, while Fig. 1(d)-Fig. 1(f) represents the axial image of 
PET. Fig. 1(a) is the origin corrected image after removing the neck, 
Fig. 1(b) is the sliced image after skull stripping based on the corrected 
image, and Fig. 1(c) is the final image obtained after further noise 
elimination on the skull-stripped image. The same processing was 
applied to PET images. 

3.2. Overview of proposed MACFNet 

We propose the MACFNet, which is mainly composed of the cross- 
enhanced fusion (CEFM) module and the multi-scale attention guid-
ance (MSAG) module. Fig. 2 shows the overall architecture of MACFNet. 
It consists of two dual-branch structures with different computational 
complexity. 

Firstly, MRI and PET images are simultaneously input into a pro-
posed low-level feature extraction (LFE) block, which is a combination 
of 7 × 7 convolution followed by max pooling. 

fLFE(X) = MaxPool3×3[Conv(XMRI‖PET , k=7)], (1)  

where XMRI||PET denotes the MRI and PET images and fLFE denotes 
feature maps output from the LFE block. 

Secondly, MRI and PET images are fed into the SFE block and FFE 
block in CEFM, respectively, which is mainly composed of the feed- 
forward network (FFN) and efficient channel spatial attention (ECSA). 
A cross-connection is set between the SFE and FFE block in both 
branches to fuse the complementary information of different modalities 
fully. 
{

fSFE(X) = CEFMSFE{AttentionECSA(XMRI) + concat[FFN(XMRI), FFN(XPET)]}

fFFE(X) = CEFMFFE{concat[FFN(XMRI), FFN(XPET)] + AttentionECSA(XPET)}
,

(2)  

where fSFE(X) and fFFE(X) denote the feature maps output from the SFE 
and FFE blocks, respectively, AttentionECSA denotes the ECSA attention 
mechanism, concatdenotes the concatenation operation. 

Subsequently, the fusion features obtained from the CEFM block are 
further extracted by ResNet34 to extract high-level features. These fea-
tures that contain information from different modalities are fed into the 
MSAG block to extract detailed information at different scales. Finally, 
the outputs of the two branches are subjected to concat fusion operation 
and then fed into the classifier for classification. 

Table 3 shows the detailed parameter settings of MACFNet, where we 
provide the output feature map sizes of the LFE Block, SFE Block, FFE 
Block, and MSAG Block modules, as well as the hyper-parameter values 
corresponding to each module. 

3.3. CEFM module 

The proposed CEFM module consists of three SFE modules and three 
FFE modules. The cross-structuring of the attention mechanism is used 
in order to enhance the structural features of MRI and the functional 
features of PET, while realizing the fusion of multi-level low-level fea-
tures of different modalities. 

3.3.1. SFE block and FFE block 
(1) SFE block 
The network architecture of the SFE block is shown in Fig. 3. The SFE 

block consists of a dual-branch residual architecture to fuse low-level 
features among different modalities and enhance the structural fea-
tures of MRI. 

The input feature map of SFE is represented by input1 and input2. 
where input1 represents Xi− 1

MRI(i= 1, 2,3) and input2 represents Xi− 1
PET(i =

1,2,3). When i = 1, the outputs of the LFE block on both branches are 
used as inputs to the SFE. When i > 1, the outputs of the previous SFE 
and FFE blocks in the CEFM are used as inputs to the SFE block. To fully 
extract structural information from MR images and enhance the inter-
action of low-level features of different modalities, SFE employs a two- 
level residual architecture. 

Specifically, the feature map Xi− 1
MRI ∈ RH×W×C is fed into the first-stage 

residual architecture ResBlock1 to extract structural features. Where H, 
W, and C denote the height, width, and number of channels of the 
feature map, respectively. To train the network better, We use Lea-
kyRelu as the activation function, which is mathematically represented 
as follows: 

δ(x) = max(0, x) + αi × min(0, x), (3)  

where δ denotes the LeakyRelu activation function, x denotes the input, 
and max and min denote maximum and minimum values, respectively. 
It can be seen that LeakyRelu assigns a non-zero slope αi to all negative 

Table 3 
Architectural specification of the proposed MACFNet.  

Module name Layer Output size 
(c, w, h) 

Hyper-parameters 

Input / 3 × 224×224 / 
LFE Block Conv 64×112×112 k = 7, p = 3, s = 2 

MaxPool 64×56×56 k = 3, p = 1, s = 2 
SFE Block Conv × 4 64×56×56 k = 3, p = 1, s = 1 

ECSA 64×56×56 / 
Conv 64×56×56 k = 1, p = 0, s = 1 

FFE Block Conv × 4 64×56×56 k = 3, p = 1, s = 1 
ECSA 64×56×56 / 
Conv 64×56×56 k = 1, p = 0, s = 1 

MSAG Block Conv 32×7 × 7 k = 1, p = 0, s = 1 
Scale1 512×7 × 7 k = 3, p = 1, d = 1 
Scale2 512×7 × 7 k = 3, p = 2, d = 2 
Scale3 512×7 × 7 k = 3, p = 3, d = 3 
Attention 1 × 7 × 7 k = 3 

Output AvgPool 1024×1 × 1 / 

(* k is the kernel size, p is the padding size, s is the step size, and d is the dilation 
rate). 

4 Available at https://neuro-jena.github.io/cat//index.html  
5 Available at https://github.com/FNNDSC/med2image 
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values, and during backpropagation, the gradient can be computed for 
the portion of the input that is less than zero, which allows the neurons 
in the network to maintain a certain update ability to better train the 
network. 

The ResBlock1 consists of FFN and residual connections, where the 
FFN includes convolutional layers, Rectified Linear Unit layers, and 
batch normalization layers, and the mathematical representation of 
ResBlock1 is shown below: 

FFN(X) = BN
{
ConvCin→Cout

[
δ
(
BN
(
ConvCin→Cout

(
Xi− 1

MRI, k=3
)))]}

, (4)  

ResBlock1
(
Xi− 1

MRI
)
= Xi− 1

MRI + FFN
(
Xi− 1

MRI
)
, (5)  

f
(
Xi− 1

MRI
)
= ResBlock1

(
Xi− 1

MRI
)
, (6)  

where Conv denotes the convolution layers, k denotes the kernel size, Cin 

Fig. 3. Structural Feature Enhancement Block (SFE). Xi− 1
MRI and Xi− 1

PETdenote the MRI and PET feature maps of the input of stage i − 1, and Xi
MRI denotes the enhanced 

MRI structural feature map of the output of stage i − 1, which is one of the inputs of the SEF Block in stage i. 

Algorithm 1 
The procedure of SFE.  
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Algorithm 2 
The procedure of FFE.  

Fig. 4. Efficient channel spatial attention (ECSA).  
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Fig. 5. Multi-scale attention guided block (MSAG).  

Algorithm 3 
The procedure of MSAG.  

C. Tang et al.                                                                                                                                                                                                                                    
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→ Cout denotes the change in the number of channels of the feature map 
before and after the convolution operation. Here Cout = Cin = C, BN 
denotes the batch normalization layer. Where the 3 × 3 convolution uses 
padding to ensure that the size of the output feature map remains un-
changed, and then the Xi− 1

MRI is summed with the FFN output to get the 
ResBlock1 output feature map f

(
Xi− 1

MRI
)
. 

To extract functional features from PET images, the feature map 
Xi− 1

PET ∈ RH×W×C has also been processed by the same residual structure. 
The outputs of these two residual structures are concatenated in the 
channel dimension to initially fuse structural and functional features, 
and the fusion process can be described as below: 

fZ
(
Xfusion

)
= concat

[
f
(
Xi− 1

MRI
)
, f
(
Xi− 1

PET
)]
, fZ
(
Xfusion

)
∈ RH×W×2C, (7)  

where fZ(Xfusion) represents the fused feature map, f
(
Xi− 1

MRI
)

and f
(
Xi− 1

PET
)

represent the output of ResBlock1 on the respective corresponding 
branch. 

Finally, we use 1 × 1 convolution to reduce the dimensionality of the 
fused feature map fZ(Xfusion), mathematically represented as follows: 

fU
(
Xfusion

)
= Conv2C→C

(
fZ
(
Xfusion

)
, k=1

)
, fU
(
Xfusion

)
∈ RH×W×C, (8)  

where fU(Xfusion) represents the output fused feature map after dimen-
sionality reduction. 

In the second residual architecture, ResBlock2 is used to process the 
feature map Xi− 1

MRI ∈ RH×W×C, which employs the ECSA attention mech-
anism, where the interdependencies between channels can be efficiently 
modeled through channel attention. In addition, ECSA utilizes spatial 
attention to extract the background and texture information of the 
image. We perform element-wise addition of ECSA attention-processed 
feature maps with 1 × 1 convolution-processed fusion feature maps 
fU(Xfusion), and enhance MRI features by LeakyRelu. The procedure is as 
follows: 

ResBlock2
(
Xi− 1

MRI
)
= δ
(
ECSA

(
Xi− 1

MRI
)
+ fU

(
Xfusion

))
, (9)  

f
(
Xi

MRI
)
= ResBlock2

(
Xi− 1

MRI
)
. (10)  

where f
(
Xi

MRI
)

denotes the enhanced structural feature map output by 
the SFE Block. ECSA represents the ECSA attention mechanism. The 
pseudo-code is shown in Algorithm 1: 

(2) FFE block 
Similar to SFE, the FFE module also consists of a two-branch residual 

architecture for fusing the low-level features of different modalities and 
enhancing the functional features of PET. The difference is that input1 of 
FFE denotes Xi− 1

PET(i= 1,2, 3) while input2 denotes Xi− 1
MRI(i = 1,2,3). The 

rest of the architecture is the same as SFE’s and will not be repeated. The 
pseudo-code is shown in Algorithm 2: 

3.3.2. ECSA block 
Research has shown that using attention to capture the dependencies 

of all channels in a feature map is both inefficient and unnecessary [48]. 
To effectively capture local cross-channel interactions, we propose an 
efficient channel spatial attention (ECSA), which can filter unimportant 
channel information. As shown in Fig. 4, it consists of a concatenated 
structure of efficient channel attention and spatial attention. Channel 
attention includes a global average pooling layer, a 1D convolutional 
layer, and the corresponding activation function, effectively focusing on 
the channel information related to AD pathological regions. Spatial 
attention is composed of global average pooling and global max pooling. 
It can be used to get both background information and image texture 
information. 

The first is the efficient channel attention mechanism. Specifically, 
for the input feature map, first use the global average pooling (GAP) to 
pool the information of each channel into a real number to obtain 
aggregated features: 

X̃ = fGAP(X) =
1

W × H
∑W

w=1

∑H

h=1
X(w, h), X̃ ∈ R1×1×C, (11)  

where X ∈ RH×W×C represents the input feature map. Here W and H 
denote the width and height, respectively, w and h represent pixel 
values, fGAP represents the global average pooling operation and X̃ de-
notes the statistical information associated with the channel. 

To achieve local cross-channel interaction, we use the band matrix 
Wk representing the output attention feature map to learn the channel 
attention. If the input is the MRI feature matrix XMRI, the mathematical 
expression of Wk is as follows: 

Table 4 
Ablation experiments of ECSA in CEFM.  

Auxiliary Diagnosis SEN(%) SPE(%) ACC(%) AUC(%) 

AD/CN 99.75 98.33 99.28 99.72 
w/o ECSA 98.83 98.14 98.91 99.69 
AD/MCI 99.76 96.72 98.47 99.89 
w/o ECSA 98.33 96.54 98.39 99.84 
CN/MCI 99.61 99.31 99.47 99.97 
w/o ECSA 99.07 99.02 99.07 99.93 
AD/CN/MCI 96.12 98.5 97.34 99.68 
w/o ECSA 96.04 98.18 96.55 99.26 

(* SEN: sensitivity; SPE: specificity; ACC: accuracy, ’w/o’ means without). 

Table 5 
Ablation experiments of CEFM and MSAG in different classification tasks.  

Task Method RN CEFM MSAG SEN(%) SPE(%) ACC(%) AUC(%) 

AD/CN MACFNet √ √ √ 99.91 98.92 99.59 99.94 
w/o CEFM √  √ 99.72 96.09 98.54 99.90 
w/o MSAG √ √  99.75 98.33 99.28 99.72 
w/o CEFM&MSAG √   98.39 94.93 98.21 99.80 

AD/MCI MACFNet √ √ √ 99.89 97.17 98.85 99.91 
w/o CEFM √  √ 99.88 96.05 98.60 99.94 
w/o MSAG √ √  99.76 96.72 98.47 99.89 
w/o CEFM&MSAG √   97.67 95.44 98.17 99.81 

CN/MCI MACFNet √ √ √ 99.63 99.58 99.61 99.98 
w/o CEFM √  √ 98.86 99.11 98.98 99.98 
w/o MSAG √ √  99.61 99.31 99.47 99.97 
w/o CEFM&MSAG √   98.16 98.78 98.83 99.91 

AD/CN/MCI MACFNet √ √ √ 97.75 99.04 98.23 99.89 
w/o CEFM √  √ 97.72 99.02 98.19 99.71 
w/o MSAG √ √  96.12 98.5 97.34 99.68 
w/o CEFM&MSAG √   96.21 98.46 97.19 99.68 

* (RN means ResNet). 
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Wk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω1,1
mri ⋯ ω1,k

mri 0 0 ⋯ ⋯ 0
0 ω2,2

mri ⋯ ω2,k+1
mri 0 ⋯ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 ⋯ 0 0 ⋯ ωC,C− k+1

mri ⋯ ωC,C
mri

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (12)  

where k denotes the number of cross-channels, C denotes the number of 
channels of the input band matrix, and ω represents the learnable 
channel weights, the channel weights ωi can be obtained by computing 
the interactions between X̃i(i= 1,2..C) and its k neighbors. ωi is 
described as follows: 

ωi = σ
(
∑k

j=1
ωj

iX̃
j
i

)

, X̃
j
i ∈ Ωk

i , (13)  

where Ωk
i represents the set of k neighboring channels to X̃i. The above 

process can be implemented by a one-dimensional convolution: 

Wk = σ(C1Dk(X̃)), (14)  

where C1Dk represents a one-dimensional convolution of size k, and σ 
denotes the sigmoid function. In addition, the coverage range of the 

cross-channel is determined based on the size of the convolution kernel 
k, implying a potential mapping ψ between k and C. Since the number of 
input channels is usually a power of 2, the following mapping rela-
tionship is established: 

k = ψ(C) =
⃒
⃒
⃒
⃒
b + log2C

γ

⃒
⃒
⃒
⃒, (15)  

where γ and b denote the hyperparameters of the mapping process, and 
the size of the k can be computed from the input number of channels C. 

Finally, the matrix Wk ∈ R1×1×C is element-wise multiplied with the 
input X to obtain the final output feature map of the CA. 

fCA(X) = X ⊗ Wk, fCA(X) ∈ RH×W×C, (16)  

where ⊗ denotes the element-wise product,fCA(X) represents the output 
feature map after channel attention. 

The right side of Fig. 4 shows the spatial attention mechanism. For 
each channel of fCA(X), the maximum value and average value are 
computed separately. This preserves the background and texture infor-
mation of the image. Subsequently, these two outcomes are stacked, and 
a 7 × 7 convolution operation with a single channel is performed to 
adjust the channel number. Finally, a sigmoid function is applied to 
generate the weight map of the input feature map: 

fSA(X)= σ[Conv2→1
(
concat

(
AvgPool

(
fCA(X)

)
,MaxPool

(
fCA(X)

))
, k=7

]
,

(17)  

where fSA(X) ∈ RH×W×1 represents the output spatial attention weight 
map, which is then multiplied by the original input to obtain the ECSA 
output: 

fECSA(X) = fCA(X) ⊗ fSA(X), fECSA(X) ∈ RH×W×C, (18)  

where fECSA(X) represents the output feature map of the ECSA. 

3.4. MSAG block 

The lesions associated with AD occur in regions of the brain at 
different scales. As illustrated in Fig. 5, to avoid the problem that feature 
extraction from a single scale leads to ignoring the details and overall 
structure of the image, the Multiscale Attention Guided (MSAG) 
framework is proposed, consisting of feature extraction and feature 
fusion. 

In the feature extraction stage, dilated convolutions with different 
dilation rates are applied at multiple scales to identify brain atrophy. 
The utilization of dilated convolutions allows for a rich receptive field 
without increasing the model parameters or computational complexity. 
In the feature fusion stage, we use convolution and sigmoid as hard 
attention mechanisms to capture global contextual information at each 
scale. This approach helps mitigate the noise caused by redundant in-
formation at different scales. Finally, the feature maps extracted at 
different scales are element-wise added to obtain a fused feature map 
containing information at different scales. 

In the feature extraction stage, for the input X ∈ RH×W×C, the 
dimensionality of the original channels is first reduced using 1 × 1 
convolution to obtain Xʹ ∈ RH×W×Cʹ: 

Xʹ = ConvC→Cʹ(X, k=1), (19)  

where C′ = C/r represents the number of channels in the output feature 
map, where r denotes the scaling factor to extract features at different 
scales. We use dilation convolution with size 3 × 3 and dilation rate 1, 2, 
and 3 on scales F1, F2, and F3, respectively. At the same time, in the 
process of convolution, padding is used to ensure that the outputs Y1, Y2, 
and Y3 have the same size, and the output of each scale via the BN and 
ReLu activation functions: 

Table 6 
Performance comparison with other methods.  

Task Method SEN 
(%) 

SPE 
(%) 

ACC 
(%) 

AUC 
(%) 

AD/CN Song et al.(2021) [37] 93.33 94.27 94.11 n/a 
Zhang et al.(2019) 
[54] 

96.58 95.39 98.47 98.61 

Fang et al.(2020) [52] 95.89 98.72 99.27 n/a 
Gao et al.(2022) [26] 91.70 93.50 92.70 96.4 
Zhang et al.(2022) 
[53] 

n/a n/a 96.23 99.00 

Tu et al.(2022) [16] 97.40 93.00 96.20 98.60 
Abde et al.(2022) [30] 98.82 97.52 98.24 97.70 
Shi et al.(2022) [31] 96.10 97.47 96.76 97.03 
Leng et al.(2023) [45] 97.22 98.21 97.67 98.55 
Ismail et al.(2023) 
[35] 

95.00 94.00 94.40 n/a 

MACFNet(ours) 99.91 98.92 99.59 99.88 
AD/MCI Song et al.(2021) [37] 71.19 85.94 80.80 n/a 

Zhang et al.(2019) 
[54] 

97.43 84.31 88.20 88.01 

Fang et al.(2020) [52] 89.71 93.59 92.57 n/a 
Zhang et al.(2022) 
[53] 

n/a n/a 88.12 91.00 

Liu et al.(2022) [47] 94.91 98.52 94.44 97.00 
Ismail et al.(2023) 
[35] 

89.20 93.30 90.00 n/a 

MACFNet(ours) 99.89 97.07 98.85 99.90 
CN/MCI Song et al.(2021) [37] 84.69 85.60 85.00 n/a 

Zhang et al.(2019) 
[54] 

90.11 91.82 85.74 88.15 

Fang et al.(2020) [52] 88.36 92.56 90.35 n/a 
Zhang et al.(2022) 
[53] 

n/a n/a 87.45 95.0 

Abde et al.(2022) [30] 90.26 96.98 94.59 93.3 
Shi et al.(2022) [31] 85.98 70.90 80.73 78.75 
Ismail et al.(2023) 
[35] 

96.00 89.20 93.20 n/a 

MACFNet(ours) 99.63 99.58 99.61 99.98 
AD/CN/ 

MCI 
Song et al.(2021) [37] 55.67 83.40 71.52 n/a 
Zhang et al.(2022) 
[53] 

n/a n/a 80.34 95.00 

Golo et al.(2022) [43] n/a n/a 96.88 n/a 
Han et al.(2022) [55] n/a n/a 67.74 n/a 
Ismail et al.(2023) 
[35] 

n/a n/a 92.30 n/a 

MACFNet(ours) 97.75 99.04 98.23 99.82 

(* Bold indicates the best value in terms of the evaluation indicator. ’n/a’ means 
not available.). 
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Yi = Relu(BN(ConvCʹ→C(Xʹ, ki)))i=1,2,3, (20)  

where i denotes different scales, Yi ∈ RH×W×C represents the extracted 
feature maps at different scales, and ki represents the kernel size at 
different scales. 

In the feature fusion stage, unlike Liu et al. [47] and Ge et al. [49] 
which proposed aggregating or concatenating features on all scales to 
fuse multi-scale information, we use the hard attention mechanism to 
suppress redundant information that comes from each scale. In this 
paper, 1 × 1 convolution and Sigmoid as hard attention. For feature map 
input at different scales, attention is used on F1scale − − F3scale scales 
respectively: 
⎧
⎨

⎩

A = σ(ConvC→1(Y1, k = 1)),
B = σ(ConvC→1(Y2, k = 1)),
C = σ(ConvC→1(Y3, k = 1)),

(21)  

where A,B,C ∈ RH×W×1 represent attention weight maps of different 
scales. They are element-wise multiplied with the original feature maps 
at each scale. Finally, multi-scale features are generated by element-wise 
addition operation: 

Z = Y1 ⊗ A + Y2 ⊗ B + Y3 ⊗ C. (22)  

where Z ∈ RH×W×C denotes the output multi-scale fusion feature map. 
Different from Liu et al.’s method [47], our method focuses on "impor-
tant features under different scale receptive fields". Specifically, we 
employ attention to suppress redundant information before fusion 

effectively. The pseudo-code is shown in Algorithm 3: 

4. Results 

This section first describes the experimental environment, parameter 
settings as well as the evaluation metrics of the model. Secondly, the 
effectiveness of MACFNet on different classification tasks is analyzed, 
including ablation experiments and comparison analysis with other 
multimodal classification methods. Finally, the effectiveness of MACF-
Net is visualized directly. 

4.1. Experimental setup 

All experiments were conducted on a workstation equipped with four 
Nvidia A100 graphics processing units (GPUs), the operating system 
Ubuntu 20.04, and a total of 160 GB of video memory. We resized the 
input images to a size of 224 × 224 and then trained MACFNet on the 
Pytorch 1.11.0 framework. more detailed settings are as follows: (i) the 
optimizer uses the Adam optimizer; (ii) the batch size is set to 32; (iii) 
the loss function uses the CrossEntropy; and (ii) the learning rate is set to 
1 × 10− 5. 

To validate the effectiveness of the proposed model, drawing on 
Meng et al. [50] and Tang et al. [51], in this paper, the preprocessed 
dataset is randomly divided into a training set, a validation set, and a test 
set in the ratio of 6:2:2. Among them, the training set is used to train the 
model parameters so that the model can learn the patterns and features 

Fig. 6. MACFNet acc curves on training and validation sets.  
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of the data. Secondly, the validation set is used to select the optimal 
model and tune the hyperparameters; finally, the performance of the 
model is evaluated using the test set. 

4.2. Performance evaluation 

To evaluate the effectiveness of MACFNet, several evaluation metrics 
were computed, including sensitivity, specificity, accuracy, and the area 
under the curve (AUC). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Accuracy =
TP + TN

TP + FN + TN + FP

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

(23) 

The terms "true positive," "true negative," "false positive," and "false 
negative" are represented as "TP," "TN," "FP," and "FN," respectively. The 
ROC (Receiver Operating Characteristic) curve is a graphical tool for 
evaluating the performance of a classification model. The calculation 
method for AUC involves integrating the area under the ROC curve, 
which is used to measure the classifier’s ability to classify samples at 
different thresholds. A higher AUC value reflects better performance of 
the classifier. 

4.3. Ablation experiments 

The purpose of this section is to demonstrate the validity of the 
proposed components (ECSA, CEFM, and MSAG) through ablation ex-
periments, all experiments using the same parameter settings to ensure 
fairness. 

4.3.1. Performance of ECSA block 
We use different strategies to verify the effectiveness of ECSA. As 

shown in Table 4, firstly, the CEFM module containing only SFE and FFE 
is added to the baseline model ResNet34, and the classification accu-
racies are 98.91 %, 98.39 %, 99.07 %, and 96.55 % for AD vs. CN, AD vs. 
MCI, CN vs. MCI and AD vs. CN vs. MCI, respectively. After adding the 
ECSA module to the CEFM, the classification accuracies are 99.28 %, 
98.47 %, 99.47 %, and 97.34 %, respectively. It can be seen that the 
inclusion of the ECSA module increases the classification accuracy by 
0.37 %, 0.08 %, 0.4 % and 0.79 %, respectively. This result proves the 
effectiveness of ECSA. Specifically, ECSA is able to effectively focus on 
important information related to AD through spatial attention and 
efficient channel attention mechanisms to enhance MRI structural fea-
tures and PET functional features. This enabled the model to capture 
better the abnormal representation of Alzheimer’s disease in brain im-
ages, such as grey and white matter regions. 

In addition, it can be seen that among the four groups of classifica-
tion tasks, the classification accuracies of the AD vs. CN, CN vs. MCI 
tasks are much higher than those of the AD vs. MCI and multiple clas-
sification tasks, which is because the AD-related lesion areas do not 
change significantly at the early stage. Meanwhile, it is difficult for MCI 
to distinguish AD from CN. 

4.3.2. Performance of CEFM module 
To verify the effectiveness of CEFM, we added the CEFM module to 

the baseline model. As shown in Table 5, compared with the baseline 
model, with the addition of CEFM, the classification accuracy improved 
by 1.07 %, 0.3 %, and 0.64 % in the binary classification tasks of AD vs. 
CN, AD vs. MCI, and CN vs. MCI, respectively. In the multiple classifi-
cation task, the classification accuracy improved by 0.15 %. These re-
sults suggest that fusing multilevel low-level features from different 

Fig. 7. Confusion matrixes of MACFNet for different classification tasks.  
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modalities can further enhance the effectiveness of the model for AD 
diagnosis. The high-level features tend to contain more abstract and 
semantically rich information, which helps better capture the image’s 
global contextual information. However, low-level features focus on 
image details and texture information, which is crucial for AD diagnosis. 
By fusing low-level features from different modalities, the complemen-
tary nature of low-level and high-level features can be fully utilised to 
provide a more comprehensive and enriched feature representation, 
enhancing the understanding and representation of the model. In 
addition, different modalities have differentiation, with MRI focusing 
more on structural information and PET focusing more on functional 
information. High-level features show less sensitivity to these differ-
ences, while low-level features are more sensitive. By integrating 
multilevel features, the effect of heterogeneity across modalities can be 
reduced, thus enhancing the generalisation and robustness of the model 
to multimodal images. 

4.3.3. Performance of MSAG block 
The MSAG module was added to the baseline model to validate the 

diagnostic performance of the module in different classification tasks. As 
shown in Table 5, the classification accuracies of AD vs. CN, AD vs. MCI, 
CN vs. MCI, and AD vs. CN vs. MCI were improved by 0.33 %, 0.43 %, 
0.15 %, and 1.00 %, respectively, with the MSAG module. This shows 
that multiscale feature extraction can localize the different lesion re-
gions associated with AD and improve classification accuracy. Further-
more, our MSAG module results in higher classification accuracy 
compared to the CEFM module in the multi-class classification task. This 
is because the pathological regions associated with AD subtypes may be 
distributed in multiple ROI regions, and the utilization of different scales 
of receptive fields can effectively focus on these regions. 

4.4. Comparison with other methods 

In this section, a comparison is made between the MACFNet and the 
multimodal methods based on the ADNI database. It includes feature 
fusion-based methods [16,30,31,52], image fusion-based methods [35, 
37], data generation-based methods [26,53], and cross-modal inter-
action-based methods [43,45]. In addition, multiscale-based methods 
[47] were also compared, as shown in Table 6. 

In the AD vs. MCI classification task, MACFNet achieved superior 
results in the three metrics of sensitivity, accuracy, and AUC compared 
to the multiscale approach proposed by Liu et al. [47]. This is because 
they use a diagnostic approach based on unimodal data, whereas 
MACFNet extracts features from both MRI and PET modalities. It can be 
inferred that making full use of complementary information from 
different modalities is beneficial for AD diagnosis. However, Liu et al. 
[47] reported a specificity of 98.52 %, slightly higher than the MACFNet 
method. It shows that their ability to recognize negative samples is su-
perior to ours. This is because they proposed a multiscale approach to 
extract features from ROI, including gray matter (GM) and white matter 
(WM) regions, reducing the negative impact of redundant information. 

4.5. Performance analysis 

To analyze the performance of our MACFNet model, we present the 
accuracy curves of MACFNet on the training and validation sets. In 
addition, confusion matrices and ROC curves demonstrate the model’s 
classification effectiveness on the test set. 

The accuracy convergence curves of MACFNet on the training and 
validation sets are shown in Fig. 6. It can be seen that MACFNet achieves 
excellent classification performance. In addition, MACFNet achieves the 
highest accuracy in the AD vs. CN and CN vs. MCI tasks, and slightly 
lower accuracy in the AD vs. MCI and multiple classification tasks. This 

Fig. 8. ROC curves of MACFNet for different classification tasks.  
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is because MCI is an early stage of AD where brain changes are not 
obvious. 

Fig. 7 illustrates the confusion matrix of MACFNet on the test dataset, 
revealing that MACFNet achieved the highest classification accuracy for 
CN, reaching a remarkable 99.9 %. 

The ROC curves for different classification tasks are illustrated in 
Fig. 8. The results demonstrate the exceptional classification perfor-
mance of our MACFNet across the four classification tasks. The classi-
fication performance of AD vs. CN and CN vs. MCI is superior to that of 
the other two classification tasks, which also indirectly reflects the 
consistency of MACFNet’s classification results on the training and 
validation sets. 

5. Discussion 

5.1. Evaluation of MACFNet 

As shown in Table 6, our MACFNet achieves the best classification 
performance in binary classification tasks such as AD and CN, CN and 
MCI, as well as multi-classification tasks. This can be attributed to 
several factors below. Firstly, MACFNet not only considers the fusion of 
different modal high-level features but also pays attention to the inter-
action between cross-modal low-level features. Secondly, in order to 
reduce the noise effects from irrelevant channel features, double 
weighting is performed using ECSA attention. This enables MACFNet to 
effectively capture functional and structural information related to AD. 
In addition, by utilizing multi-scale feature fusion in the multimodal 
approach, MACFNet is also able to capture both local and global 
contextual information of AD, thus further improving the performance 
of the model. 

However, in the AD and MCI classification tasks, Liu et al.’s model 

was slightly higher in specificity than MACFNet. This is because brain 
atrophy in Alzheimer’s disease affects ROI regions of the brain, such as 
grey and white matter. Although the relevant regions were also pre-
processed in this study, the ROI regions were not analysed separately. 
Instead, Liu et al. diagnosed AD by secondary processing the images 
again through image analysis tools such as Python and Nifti, manually 
delineating the GM and WM regions, and fusing multi-scale grey and 
white matter features of the MRI images. San et al. [56] and Mancho 
et al. [57] similarly demonstrated the importance of ROI regions. These 
regions are often closely associated with disease progression, and by 
specifically targeting these regions for analysis, it may be possible to 
further improve the model’s performance. Therefore, we will consider 
designing automated ROI extraction modules in the future and embed-
ding them into an end-to-end image classification network. This could 
reduce the complexity of manually classifying ROIs and further improve 
the generalisation performance of the model. 

5.2. Visualization of MACFNet 

Among visualisation techniques, Grad-CAM has been widely used as 
an effective gradient visualisation method for explanatory studies of 
deep learning models. In diagnosing AD, many studies have used Grad- 
CAM for visualisation [37,58,59]. With this method, it is possible to 
directly show the image regions that the model focuses on when making 
predictions. Therefore, the same Grad-CAM technique is used in this 
paper. In particular, the work of Lian et al. [60] has been remarkably 
effective in the analysis of gradient visualisation, and their study pro-
vides valuable insight into understanding the model’s decision making. 
Fig. 9 shows the results of the visualization of MACFNet on Grad-CAM. It 
can be found that MACFNet can accurately focus on the brain lesion 
areas. As shown in Fig. 9(a), the ROI regions are distributed throughout 

Fig. 9. The visualization of MACFNet using Grad-CAM.  
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the entire brain portion. This is because the entire brain of the subject 
undergoes atrophy at the AD stage. 

As can be seen in Fig. 9(b), the ROI regions of MCI subjects are 
relatively concentrated. This is because MCI, as a precursor stage of AD, 
has no obvious brain changes, and brain atrophy occurs in localized 
areas. 

In addition, it can be seen from Fig. 9(d)-(f) that the heat map of the 
PET image focuses on different areas from that of the MRI. That is mainly 
caused by the different imaging mechanisms. This result further dem-
onstrates that integrating different modalities enables the acquisition of 
complementary information, which can help diagnose AD. 

6. Conclusion 

In this paper, we propose a multimodal CNN network, MACFNet, 
with a two-branch crossover mechanism for multimodal AD classifica-
tion. The MACFNet employs a cross-enhanced fusion algorithm based on 
an efficient attentional mechanism to enhance the structural and func-
tional information of neuroimages of different modalities, and to ach-
ieve the fusion and interactions of the multimodal low-level features. In 
addition, MACFNet can focus on the local and global information related 
to AD by adopting a multi-scale approach in order to obtain different 
scales of receptive fields. Experiments on the ADNI database show that 
our MACFNet achieves better classification performance than existing 
methods. The classification accuracies reach 99.59 %, 98.85 %, 99.61 %, 
and 98.23 % for AD vs. CN, AD vs. MCI, CN vs. MCI and AD vs. CN vs. 
MCI, respectively. 

However, the proposed MACFNet only considers the use of multi-
modal neuroimaging for AD diagnosis, ignoring clinical and biological 
information. In addition, MACFNet performs feature extraction on the 
whole image, ignoring features in ROI regions such as GM or WM. In the 
future, we will consider extracting and analyzing ROI features from 
neuroimaging data while further optimizing the variants of MACFNet by 
combining clinical data to improve the model’s generalization ability. 
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Appendix 

Table 7 shows the mathematical symbols used in this paper.  

Table 7 
Mathematical symbols.  

Symbol Meaning 

+ Element-wise add 
× Multiplication operation 
⊗ Element-wise product 
concat Concatenation operation 
max Maximum value 
Min Minimum value 
X Input feature map 
f(X) Output feature map 
R Set of real numbers 
H The height of the feature map 
W The width of the feature map 
C The number of channels of the feature map 
(w, h) Coordinate of pixel 

(continued on next page) 
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Table 7 (continued ) 

Symbol Meaning 

k Kernel size 
Wk Learnable band matrix (k means the number of cross-channels) 
ω Learnable channel weight 
ψ Mapping relation 
δ LeakyRelu activation function 
σ Sigmoid activation function 
r Scaling factor 
Cin → Cout Variation in the number of channels of the feature map  
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